3.498 \(\int \frac {1}{(a+b \sinh ^2(e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=115 \[ -\frac {b \sinh (e+f x) \cosh (e+f x)}{a f (a-b) \sqrt {a+b \sinh ^2(e+f x)}}-\frac {i \sqrt {a+b \sinh ^2(e+f x)} E\left (i e+i f x\left |\frac {b}{a}\right .\right )}{a f (a-b) \sqrt {\frac {b \sinh ^2(e+f x)}{a}+1}} \]

[Out]

-b*cosh(f*x+e)*sinh(f*x+e)/a/(a-b)/f/(a+b*sinh(f*x+e)^2)^(1/2)-I*(cos(I*e+I*f*x)^2)^(1/2)/cos(I*e+I*f*x)*Ellip
ticE(sin(I*e+I*f*x),(b/a)^(1/2))*(a+b*sinh(f*x+e)^2)^(1/2)/a/(a-b)/f/(1+b*sinh(f*x+e)^2/a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {3184, 21, 3178, 3177} \[ -\frac {b \sinh (e+f x) \cosh (e+f x)}{a f (a-b) \sqrt {a+b \sinh ^2(e+f x)}}-\frac {i \sqrt {a+b \sinh ^2(e+f x)} E\left (i e+i f x\left |\frac {b}{a}\right .\right )}{a f (a-b) \sqrt {\frac {b \sinh ^2(e+f x)}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sinh[e + f*x]^2)^(-3/2),x]

[Out]

-((b*Cosh[e + f*x]*Sinh[e + f*x])/(a*(a - b)*f*Sqrt[a + b*Sinh[e + f*x]^2])) - (I*EllipticE[I*e + I*f*x, b/a]*
Sqrt[a + b*Sinh[e + f*x]^2])/(a*(a - b)*f*Sqrt[1 + (b*Sinh[e + f*x]^2)/a])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 3177

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[e + f*x, -(b/a)])/f, x]
 /; FreeQ[{a, b, e, f}, x] && GtQ[a, 0]

Rule 3178

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Dist[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[1 + (b*Sin
[e + f*x]^2)/a], Int[Sqrt[1 + (b*Sin[e + f*x]^2)/a], x], x] /; FreeQ[{a, b, e, f}, x] &&  !GtQ[a, 0]

Rule 3184

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> -Simp[(b*Cos[e + f*x]*Sin[e + f*x]*(a + b*Sin[
e + f*x]^2)^(p + 1))/(2*a*f*(p + 1)*(a + b)), x] + Dist[1/(2*a*(p + 1)*(a + b)), Int[(a + b*Sin[e + f*x]^2)^(p
 + 1)*Simp[2*a*(p + 1) + b*(2*p + 3) - 2*b*(p + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f}, x] && NeQ
[a + b, 0] && LtQ[p, -1]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+b \sinh ^2(e+f x)\right )^{3/2}} \, dx &=-\frac {b \cosh (e+f x) \sinh (e+f x)}{a (a-b) f \sqrt {a+b \sinh ^2(e+f x)}}-\frac {\int \frac {-a-b \sinh ^2(e+f x)}{\sqrt {a+b \sinh ^2(e+f x)}} \, dx}{a (a-b)}\\ &=-\frac {b \cosh (e+f x) \sinh (e+f x)}{a (a-b) f \sqrt {a+b \sinh ^2(e+f x)}}+\frac {\int \sqrt {a+b \sinh ^2(e+f x)} \, dx}{a (a-b)}\\ &=-\frac {b \cosh (e+f x) \sinh (e+f x)}{a (a-b) f \sqrt {a+b \sinh ^2(e+f x)}}+\frac {\sqrt {a+b \sinh ^2(e+f x)} \int \sqrt {1+\frac {b \sinh ^2(e+f x)}{a}} \, dx}{a (a-b) \sqrt {1+\frac {b \sinh ^2(e+f x)}{a}}}\\ &=-\frac {b \cosh (e+f x) \sinh (e+f x)}{a (a-b) f \sqrt {a+b \sinh ^2(e+f x)}}-\frac {i E\left (i e+i f x\left |\frac {b}{a}\right .\right ) \sqrt {a+b \sinh ^2(e+f x)}}{a (a-b) f \sqrt {1+\frac {b \sinh ^2(e+f x)}{a}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 100, normalized size = 0.87 \[ \frac {-\sqrt {2} b \sinh (2 (e+f x))-2 i a \sqrt {\frac {2 a+b \cosh (2 (e+f x))-b}{a}} E\left (i (e+f x)\left |\frac {b}{a}\right .\right )}{2 a f (a-b) \sqrt {2 a+b \cosh (2 (e+f x))-b}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sinh[e + f*x]^2)^(-3/2),x]

[Out]

((-2*I)*a*Sqrt[(2*a - b + b*Cosh[2*(e + f*x)])/a]*EllipticE[I*(e + f*x), b/a] - Sqrt[2]*b*Sinh[2*(e + f*x)])/(
2*a*(a - b)*f*Sqrt[2*a - b + b*Cosh[2*(e + f*x)]])

________________________________________________________________________________________

fricas [F]  time = 0.53, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b \sinh \left (f x + e\right )^{2} + a}}{b^{2} \sinh \left (f x + e\right )^{4} + 2 \, a b \sinh \left (f x + e\right )^{2} + a^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sinh(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sinh(f*x + e)^2 + a)/(b^2*sinh(f*x + e)^4 + 2*a*b*sinh(f*x + e)^2 + a^2), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sinh(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Erro
r: Bad Argument Type

________________________________________________________________________________________

maple [A]  time = 0.26, size = 252, normalized size = 2.19 \[ \frac {-\sqrt {-\frac {b}{a}}\, b \sinh \left (f x +e \right ) \left (\cosh ^{2}\left (f x +e \right )\right )+a \sqrt {\frac {b \left (\cosh ^{2}\left (f x +e \right )\right )}{a}+\frac {a -b}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticF \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right )-\sqrt {\frac {b \left (\cosh ^{2}\left (f x +e \right )\right )}{a}+\frac {a -b}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticF \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) b +\sqrt {\frac {b \left (\cosh ^{2}\left (f x +e \right )\right )}{a}+\frac {a -b}{a}}\, \sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \EllipticE \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) b}{a \left (a -b \right ) \sqrt {-\frac {b}{a}}\, \cosh \left (f x +e \right ) \sqrt {a +b \left (\sinh ^{2}\left (f x +e \right )\right )}\, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*sinh(f*x+e)^2)^(3/2),x)

[Out]

(-(-1/a*b)^(1/2)*b*sinh(f*x+e)*cosh(f*x+e)^2+a*(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*Ellipti
cF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))-(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticF(s
inh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*b+(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(cosh(f*x+e)^2)^(1/2)*EllipticE(sin
h(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*b)/a/(a-b)/(-1/a*b)^(1/2)/cosh(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \sinh \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sinh(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*sinh(f*x + e)^2 + a)^(-3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\left (b\,{\mathrm {sinh}\left (e+f\,x\right )}^2+a\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*sinh(e + f*x)^2)^(3/2),x)

[Out]

int(1/(a + b*sinh(e + f*x)^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a + b \sinh ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sinh(f*x+e)**2)**(3/2),x)

[Out]

Integral((a + b*sinh(e + f*x)**2)**(-3/2), x)

________________________________________________________________________________________